Arbitrary Lagrangian-Eulerian Schemes for Ocean Modelling

&

A Few Memories of Unstructured Mesh Methods for CFD

Darren Engwirda

Massachusetts Institute of Technology NASA Goddard Institute for Space Studies

I.

1. CFD – (Not) Geophysical Fluid Dynamics

'Conventional' CFD differs from GFD in a number of important ways:

Pressure Coupling

Velocity-pressure coupling is 'isotropic' – no hydrostatic assumption:

• Non-hydrostatic pressure distribution computed at each time-step.

1. CFD – (Not) Geophysical Fluid Dynamics

'Conventional' CFD differs from GFD in a number of important ways:

Pressure Coupling

Velocity-pressure coupling is 'isotropic' – no hydrostatic assumption:

• Non-hydrostatic pressure distribution computed at each time-step.

Sub-grid Modelling

Resolve boundary-layer flows through mesh adaptation:

- Sub-grid parameterisations used less frequently.
- Direct Numerical Simulation (DNS) not impossible.

1. CFD – (Not) Geophysical Fluid Dynamics

'Conventional' CFD differs from GFD in a number of important ways:

Pressure Coupling

Velocity-pressure coupling is 'isotropic' – no hydrostatic assumption:

• Non-hydrostatic pressure distribution computed at each time-step.

Sub-grid Modelling

Resolve boundary-layer flows through mesh adaptation:

- Sub-grid parameterisations used less frequently.
- Direct Numerical Simulation (DNS) not impossible.

Geometric Constraints

Solve flow problems for arbitrarily complex geometries.

• Use unstructured meshes and numerical methods.

1. CFD - Voronoi-based Finite Volume Schemes

Integrate equations of motion in divergence form over control volumes:

$$\int_{\Omega} \frac{dq}{dt} + \nabla \cdot (\mathbf{F}(q)) - \mathbf{S_q} \, dV = 0$$

- A Voronoi diagram is a set of polygonal cells.
- Each cell contains varying numbers of edges.
- The edges of each cell are always orthogonal to a common centre.
- The Voronoi diagram is constructed upon an underlying triangulation.

1. CFD – Voronoi Finite-Volumes

Variable resolution Voronoi mesh, clustering elements in boundary layer regions.

2. Mesh – Unstructured Triangulations

The creation of 'optimal' unstructured triangulations & Voronoi diagrams is non-trivial:

- Need to ensure that 'element-quality' is adequate:
 - Don't want highly skewed cells aim for equilateral triangles.
 - Don't want cell size to vary too rapidly.
- Need to optimise both vertex positions and mesh topology.

2. Mesh – Unstructured Triangulations

The creation of 'optimal' unstructured triangulations & Voronoi diagrams is non-trivial:

- Need to ensure that 'element-quality' is adequate:
 - Don't want highly skewed cells aim for equilateral triangles.
 - Don't want cell size to vary too rapidly.
- Need to optimise both vertex positions and mesh topology.

The so-called **Delaunay Triangulation** offers a convenient framework for mesh generation. Given a set of vertices $X \subset \mathbb{R}^d$, the Delaunay triangulation $\mathcal{T} = \mathrm{Del}(X)$ is known to be 'optimal' for a range of geometric criteria.

2. Mesh – Quality Delaunay Triangulations

'Refinement' algorithms incrementally add vertices to a coarse mesh until all constraints are satisfied:

 A coarse triangulation is built based on the external geometry of the domain.

2. Mesh – Quality Delaunay Triangulations

'Refinement' algorithms incrementally add vertices to a coarse mesh until all constraints are satisfied:

- A coarse triangulation is built based on the external geometry of the domain.
- Additional vertices are added to 'remove' any poor quality triangles by splitting them.

2. Mesh – Quality Delaunay Triangulations

'Refinement' algorithms incrementally add vertices to a coarse mesh until all constraints are satisfied:

- A coarse triangulation is built based on the external geometry of the domain.
- Additional vertices are added to 'remove' any poor quality triangles by splitting them.
- All elements in the final mesh satisfy shape and size constraints. In \mathbb{R}^2 , the refinement algorithm can achieve a minimum angle $\theta_{\min} \geq 30^{\circ}$.

2. Mesh – Surface & Volume Triangulations

Surface and volumetric triangulations of a turbine blade for a 3d CFD study.

Unstructured GFD Applications?

Unstructured GFD Applications?

II.

3. ALE – Eulerian vs Lagrangian Methods

Equations of motion can be represented in either an Eulerian or Lagrangian form:

- **Eulerian Form**: Mesh is fixed and transport is achieved through explicit evaluation of cell-wise fluxes.
- Lagrangian Form: Mesh moves with the flow. Flux evaluation is replaced by mesh movement.

3. ALE – Eulerian vs Lagrangian Methods

Equations of motion can be represented in either an Eulerian or Lagrangian form:

- **Eulerian Form**: Mesh is fixed and transport is achieved through explicit evaluation of cell-wise fluxes.
- Lagrangian Form: Mesh moves with the flow. Flux evaluation is replaced by mesh movement.

Lagrangian methods allow the mesh to align locally with features of the flow:

Quasi-Isopycnal Representation

Lagrangian vertical transport can be used to achieve a quasi-isopycnal representation in the open-ocean, where the flow is essentially adiabatic. **Minimisation of spurious vertical mixing.**

3. ALE - Layered Vertical Structure

The aim is to follow the approach of HYCOM, introducing a 'flexible' vertical discretisation that:

- Follows isopycnals where possible.
- Smoothly transitions to other representations where necessary. (z-model in mixed layer, σ -model near sharp topography, etc).

¹Temperature profiles from Bleck 2004

3. ALE – Layer-wise Equations of Motion

The equations of motion for the ocean can be written as a set of layer-wise conservation laws:

$$\begin{split} \frac{d\mathbf{u}_h}{dt} + \nabla \cdot \left(\mathbf{u}_h \, \mathbf{u}_h^\mathsf{T}\right) &= -\nabla_p(\Phi) + \mathbf{S}_{\mathbf{u}_h} \\ \frac{d\Phi}{dp} &= -\alpha \\ \frac{d\Delta p}{dt} + \nabla \cdot \left(\mathbf{u}_h \Delta p\right) &= \mathbf{S}_p \\ \frac{d\theta, S}{dt} + \nabla \cdot \left(\mathbf{u}_h \theta, S\right) &= \mathbf{S}_{\theta, \mathbf{S}} \end{split}$$

Rather than introducing a 'hybrid' vertical coordinate (as per HYCOM), we instead form a finite-volume scheme, integrating over layers of variable thickness.

3. ALE – Arbitrary Lagrangian Eulerian (ALE) Methods

Issues can arise with purely-Lagrangian methods due to the movement of the grid:

- The grid may become overly distorted due to local flow characteristics.
- The grid may evolve into a non-optimal configuration.

3. ALE – Arbitrary Lagrangian Eulerian (ALE) Methods

Issues can arise with purely-Lagrangian methods due to the movement of the grid:

- The grid may become overly distorted due to local flow characteristics.
- The grid may evolve into a non-optimal configuration.

These issues can be mitigated through use of an **Arbitrary Lagrangian Eulerian (ALE)** approach:

Quasi-Eulerian Re-mapping

If the grid is 'far-enough' away from optimal, **re-map** all flow variables onto a new target grid via interpolation.

3. ALE – Simple Sketch of an ALE Algorithm

$$\Phi^{t} = \Phi_{b} - \int_{\rho_{b}}^{\rho_{t}} \alpha(\theta^{t}, S^{t}, \rho^{t}) d\rho$$

$$\Delta \rho \, \mathbf{u}_{h}^{t+\delta t} = \mathbf{u}_{h}^{t} + \delta t (-\nabla_{\rho} \Phi^{t} - \nabla \cdot (\Delta \rho \, \mathbf{u}_{h} \, \mathbf{u}_{h}^{\mathsf{T}})^{t} + \Delta \rho \, \mathbf{S}_{u})$$

$$\Delta \rho^{t+\delta t} = \Delta \rho^{t} - \delta t \nabla \cdot (\Delta \rho \, \mathbf{u}_{h}^{t+\delta t})$$

$$(\Delta \rho \, \theta, \Delta \rho \, S)^{t+\delta t} = (\Delta \rho \, \theta, \Delta \rho \, S)^{t} - \delta t \nabla \cdot (\Delta \rho \, \mathbf{u}_{h}^{t+\delta t} (\theta^{t}, S^{t}))$$

3. ALE – Simple Sketch of an ALE Algorithm

$$\Phi^{t} = \Phi_{b} - \int_{\rho_{b}}^{\rho_{t}} \alpha(\theta^{t}, S^{t}, \rho^{t}) d\rho$$

$$\Delta \rho \, \mathbf{u}_{h}^{t+\delta t} = \mathbf{u}_{h}^{t} + \delta t (-\nabla_{\rho} \Phi^{t} - \nabla \cdot (\Delta \rho \, \mathbf{u}_{h} \, \mathbf{u}_{h}^{\mathsf{T}})^{t} + \Delta \rho \, \mathbf{S}_{u})$$

$$\Delta \rho^{t+\delta t} = \Delta \rho^{t} - \delta t \nabla \cdot (\Delta \rho \, \mathbf{u}_{h}^{t+\delta t})$$

$$(\Delta \rho \, \theta, \Delta \rho \, S)^{t+\delta t} = (\Delta \rho \, \theta, \Delta \rho \, S)^{t} - \delta t \nabla \cdot (\Delta \rho \, \mathbf{u}_{h}^{t+\delta t} (\theta^{t}, S^{t}))$$

At $t + \delta t$ the grid has drifted (due to vertical transport):

If the grid is not where we want it, we can **re-map** all flow variables onto a new grid via a (conservative) **interpolation scheme**.

3. ALE – Column-wise Sketch of an ALE Algorithm

- **Update** flow variables and cell thickness via Lagrangian motion.
- Reconstruct cell-wise polynomials on current mesh.
- Integrate polynomials over new mesh to get new cell means.

^afrom Adcroft 2013

Considering that the Δp layers are **sloping** and **non-uniform** in thickness, evaluation of the pressure gradient term $\nabla_p(\Phi)$ is non-trivial.

Considering that the Δp layers are **sloping** and **non-uniform** in thickness, evaluation of the pressure gradient term $\nabla_p(\Phi)$ is non-trivial.

A well-known approach approximates the pressure gradient on a sloping layer ' \mathbf{s} ' directly, as a finite-difference of the Montgomery potential \mathbf{M} :

$$M = \alpha \nabla_s(p) + \nabla_s \Phi$$

Considering that the Δp layers are **sloping** and **non-uniform** in thickness, evaluation of the pressure gradient term $\nabla_p(\Phi)$ is non-trivial.

A well-known approach approximates the pressure gradient on a sloping layer ' \mathbf{s} ' directly, as a finite-difference of the Montgomery potential \mathbf{M} :

$$M = \alpha \nabla_s(p) + \nabla_s \Phi$$

Due to non-linearities in the equation of state $\alpha(\theta, S, p)$, such an approach is not typically stable. In regions of **sharp topography** and **stratification**:

- A small fraction of the vertical force balance can 'contaminate' the horizontal.
- Such occurances can cause spurious 'spontaneous motion' from an equilibriated state.

Following an approach of Adcroft et al. [1], the pressure gradient can instead be evaluated **indirectly**, via a finite-volume integral:

Following an approach of Adcroft et al. [1], the pressure gradient can instead be evaluated **indirectly**, via a finite-volume integral:

$$\int_{\Omega} \nabla_p(\Phi) \, dp \, dx = \oint_{\partial \Omega} \Phi \, dC$$

Following an approach of Adcroft et al. [1], the pressure gradient can instead be evaluated **indirectly**, via a finite-volume integral:

$$\int_{\Omega} \nabla_p(\Phi) \, dp \, dx = \oint_{\partial \Omega} \Phi \, dC$$

This formulation accounts for the fully non-linear distribution of Φ around each element:

Assess spurious motion with variable topography, linear stratification.

Assess spurious motion with variable topography, linear stratification.

Assess spurious motion with variable topography, linear stratification.

Given a sufficiently high-order quadrature, the finite-volume pressure gradient formulation achieves $\approxeq 0.0$ error.

Such a scheme allows flexible vertical discretisation, but will maintain equilibrium in the presence of sharp topography ad stratification.

4. Summary

- Developed a simple 'proof-of-concept' layered ocean model using ALE methodologies.
- Developed a stable pressure gradient formulation that minimises pressure gradient errors with arbitrary layer geometries/stratification.
- Looking to improve 2D model:
 - Variable number of layers per column.
 - General boundary conditions.
 - Sub-grid parameterisations.
- Incorporate ALE technology into the next iteration of the GISS ocean model.

References

[1] – Adcroft, A. and Hallberg, R. and Harrison, M., A finite volume discretization of the pressure gradient force using analytic integration. Ocean Modelling, 2008.